Expand description
A minimal dense neural network implementation for educational purposes.
Layers operate on Matrix
values and support ReLU and Sigmoid
activations. This is not meant to be a performant deep‑learning framework
but rather a small example of how the surrounding matrix utilities can be
composed.
use rustframe::compute::models::dense_nn::{ActivationKind, DenseNN, DenseNNConfig, InitializerKind, LossKind};
use rustframe::matrix::Matrix;
// Tiny network with one input and one output neuron.
let config = DenseNNConfig {
input_size: 1,
hidden_layers: vec![],
output_size: 1,
activations: vec![ActivationKind::Relu],
initializer: InitializerKind::Uniform(0.5),
loss: LossKind::MSE,
learning_rate: 0.1,
epochs: 1,
};
let mut nn = DenseNN::new(config);
let x = Matrix::from_vec(vec![1.0, 2.0], 2, 1);
let y = Matrix::from_vec(vec![2.0, 3.0], 2, 1);
nn.train(&x, &y);
Structs§
- DenseNN
- A multi-layer perceptron with full configurability
- DenseNN
Config - Configuration for a dense neural network
Enums§
- Activation
Kind - Supported activation functions
- Initializer
Kind - Weight initialization schemes
- Loss
Kind - Supported losses