Expand description
Lightweight machine‑learning models built on matrices.
Models are intentionally minimal and operate on the Matrix
type for
inputs and parameters.
use rustframe::compute::models::linreg::LinReg;
use rustframe::matrix::Matrix;
let x = Matrix::from_vec(vec![1.0, 2.0, 3.0, 4.0], 4, 1);
let y = Matrix::from_vec(vec![2.0, 3.0, 4.0, 5.0], 4, 1);
let mut model = LinReg::new(1);
model.fit(&x, &y, 0.01, 1000);
let preds = model.predict(&x);
assert_eq!(preds.rows(), 4);
Modules§
- activations
- Common activation functions used in neural networks.
- dense_
nn - A minimal dense neural network implementation for educational purposes.
- gaussian_
nb - Gaussian Naive Bayes classifier for dense matrices.
- k_means
- Simple k-means clustering working on
Matrix
data. - linreg
- Ordinary least squares linear regression.
- logreg
- Binary logistic regression classifier.
- pca
- Principal Component Analysis using covariance matrices.